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A~traet---A novel continuous time and space Monte Carlo simulation technique is presented for 
solving equations describing tracer distribution in multiphase inhomogeneous plug-flow systems. 
Comparison is made with the commonly employed method of characteristics. This comparison 
indicates that the method of characteristics is unreliable for systems with spacially varying para- 
meters. Further, results indicate that the suggested Monte Carlo technique is more efficient in the 
use of computer time than the method of characteristics. Examples are given. 

I .  I N T R O D U C T I O N  

This work describes two methods (the method of characteristics and a Monte Carlo 
simulation technique) for simulation of certain transport processes, in which the material 
entering a zone of interest (the system) is transported through it in one or more of distinct 
phases. 

Each phase is a plug flow phase with constant volumetric flow rate. However, the cross- 
section area may vary along the system and thus a characteristic "velocity profile" Ji(x) 
which varies with phase (i) or spatial location (x), can be defined. 

Material within the system may be transported in the same phase to the system boundary, 
or it may transfer anywhere along the way into another phase travelling possibly in the 
opposite direction (x is assumed scalar). Such a transfer may occur at any point along the 
path, in accordance with exchange coefficient profiles ;,.ij(x) for transfer between phases i and 
j. Note that ';~i may vary throughout the system. The effect of dispersion due to molecular 
diffusion anywhere in the system or its boundaries is not considered. 

In the characteristics method of simulation, partial differential equations for material 
balance within the system are solved to give the material concentrations at any x and t. 
The Monte Carlo simulation technique described here is a novel method, very efficient and 
accurate and much less computer-time consuming than the classical characteristic method. 
The method, based on Rappaport & Dayan (1973), solves for the concentrations by intro- 
ducing a large number of tracer particles into the system and tracing their trajectories as 
they travel through the system. These trajectories are generated randomly in accordance 
with probability distributions derived from the stochastic process associated with the 
material balance equations. For both methods simulation programs were written to provide 
the material distribution of a given system (specified by "velocity profiles" and exchange 
coefficients for each phase) at any x and t. For the purpose of comparing these two methods 
only the residence time distribution (overall time distribution of material at the system exit) 
is given here. In addition, these results can be compared with experimental results obtained 
from real systems which can be described by such a model, and thus provide confirmation 
of the model used, or help predict the system behavior when different parameters in the 
model are changed. 

Previous work on the subject includes derivations of the Monte Carlo and characteris- 
tics solutions for the case of spatially constant systems (Dayan & Levenspiel 1970), which 
this work expands to cover the spatially varying case. The numerical examples are based on 
the Kunii & Levenspiel (1969) model for a fluidized bed. Another possible flow model is 
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that of the spouted bed. Both the fluidized bed and the spouted bed systems were described 
by Dayan et al. (1973). 

2. M A T H E M A T I C A L  D I S C U S S I O N  

The considered system consists of m plug flow phases each of which flows with velocity 
f.(x) for phase i. When deriving the material balance equation we assume a conservative 
mass system with no gain or loss of material in it. Flows in and out occur only at the end 
boundaries, x = 0 and x = x . . . .  and diffusion plays no role anywhere in the system, as 
mentioned. A phase i is called a forward (backward) phase if.~ > 0 ( f  < 0) and a stagnant 
phase i f f  = 0. The tracer material is introduced into the system at t = 0. 

Material introduced into phase i is transported in it at the phase velocity. At each point 
along the path a certain proportion of the material transfers into other phases and from 
each of the other phases back into phase i. The material exchange between phases seen by 
an observer moving at the phase velocity in phase i is (defining x, as the position of the 
observer at time t): 

(C,(x,, t)) = ~ 2j,(x,)Cj(x, t) - ).o(x,)Ci(x, t) [1] 
dt j = !  

where 2o(x), in units (see- I), is the rate of exchange of material from phase i to phase j, 
2,(x) = 0, and 2ij(0) = 0 ().ij(x,,ax) = 0) for i a forward (backward) phase. Ci(x, t) is the 
concentration of material (per unit length) in phase i at coordinates (x, t) and Ax = f~(x)t. 
These equations (for i = 1, 2 . . . . .  m) can be rewritten as the following set of partial differen- 
tial equations 

OCi(x, t______) _ O[fi(x)C~(x, t)] + E :.jilx)cj x,,)- Z t). [z] 
Ot Ox j = 1 j = 1 

These equations must be solved to determine C~(x, t), the tracer concentration in the system 
at any point (x, t) of phase i. 

The (RTD) for forward phases is 

RTD(t) = ~ Ci(x . . . .  t) [3] 
i = 1  

and for backward phases is 

Note that as a result of the 

RTD(t) = ~ Ci(0, t). 
i = 1  

assumptions on the exchange coefficients Ci(O, t ) =  O, 
(C~(x . . . .  t) = 0) for t > 0, for i a forward (backward) phase. To solve the above set of partial 
hyperbolic differential equations we shall discuss the classical method of characteristics 
first. 

In our simulation, [2] was solved for the case of two phases. The method is general, 
however, and can be extended to any number of phases. 

Consider the set of equations: 

1 1 0 0 

0 0 1 1 
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where for brevity we substitute Ci for Ci(x, t), fi for fi(x), etc., and where A and B are defined 
by this equation. 

The first two lines in [4] are the partial differential equations [2]. The following two lines 
are partial derivative expansions of the differentials d(f lCt)  and d(f2C2) in terms ofdx and 
dt. 

The method of characteristics changes the above partial differential equations into 
ordinary differential equations which must, however, be integrated in particular directions. 
These characteristic directions are those for which the matrix determinant is zero, namely, 
d x / d t  = f l ,  or d x / d t  = f2 .  

If the determinant of the square matrix in [4] is zero, substituting the right hand side of 
the equation for any one of the matrix columns will still give a zero determinant. Substituting 
for the second column of A and choosing d x / d t  = f l ,  ( f l  ~ f2), we obtain: 

d(J;C1) 
- -  - -  ,4 = , ~ 2 1 C 2  - -  2 1 2 C  1 [ 5 ]  

dx 

with d x / d t  = f~ as the direction of integration. Substituting for the fourth column of A 
and choosing d x / d t  = f2(again f ,  :/= f2), we obtain: 

d ( f 2 C 2 )  
- -  - B = ).12C1 - 221C2 [6] 

dx 

with d x / d t  = J2 as the direction of integration. Note that the two equations are inter- 
connected. To solve for d(fl C l ) /dx  we must know C 2 , and similarly to solve for d( f2C2) /dx  

we must know C1. Also, since the integration of each equation proceeds in a different 
direction, we cannot simply alternately solve for successive increments in Ct and C 2. In 
fact we have a network of intersecting coordinates over the (x, t) plane, as is shown in figure 
1 for the cocurrent case and in figure 2 for the countercurrent case. 

For the cocurrent case the darkened lines in figure 1 represent the (x, t) coordinates of 
particles travelling only in phase 1 or only in phase 2. Along the darkened line marked 
"Pure C t" the concentration C2 is known to be zero, while along the "Pure C2" line the 
concentration CI is zero. As this removes the coupling between the differential equations, 
we can solve analytically for CI along the "Pure C~" line and for C 2 along the "Pure C2" 
line. In general to obtain the integral form of these differential equations we proceed as 
follows: 

dx d 2 2 1 ( f 2 C 2 )  A I 2 ( f l C  l 
For clt = .ll' 7 - ( j i C l )  - [7] f2 ( IX  £ 

dx For ~ -  = f2: ( f z C 2 )  - ,:-12(f~C1) ) . 2 1 ( f 2 C 2 )  
L f= [8] 

Xmox 

'P.,, c ; ~ . , ,  c~ 

y 
F i g u r e  1. C h a r a c t e r i s t i c  c u r v e s  fo r  c o c u r r e n t  case .  
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Xmox 

Figure 2. Characteristic curves for countercurrent case. 

Denoting t along the integration path as t,, and integrating along d x / d t  = f l  from the 
starting point (xo, to), we get : 

- -  m d l /  f l (X)Cl(X' t )=exp J~o.il(U) ) 
. [ f i ' i  ( r ('" '~'2' dk~22i(u,C2(u,t.)d u lexpLk,, .i:,I(~5 ~]~ } 

+.I1 (xo~C llx,,, t,,t] [9] 
J and along dx/dt = ./2: 

J2(x)C2(x, t ) =  e x p ( -  .).,,,(x ~.k2!_u!j2(u) du) 

[f[f [[" ,,, ] } • o exp,__ . . . . .  f~-its)tt~dt, ).12(u)Ct(u,t,)du 

+.i2(xo)C zL%, to} I [10] 
J 

where Xo is the starting point for the integration. 
Equations [9] and [10] are integrated over different paths leading to the point whose 

solution we wish to determine. 
Note that C 2 ( u  , tu) = 0 for all u along the path of integration so that [9] becomes: 

Along dx/dt = f l ,  where C2(u, t.) = 0 

Ji(xtCi(x' tx) = J'l(x°Jqt(x°' tx°)exp - o -]-'x~- du [11] 

and [10] becomes, for C,(u, t,) = 0 along its integration path: 

f2(x)C2(x, tx) = f2(x,,)C2(xo, txo)eXp - .~{-u) du . [12] 
xo 

This then is the previously mentioned analytic solution along the darkened lines in figure 

We see that falling exponentials are a commonly occurring form in these equations. 
This is used in the integration procedure, where an analytic form for C2 must be assumed 
during the integration for C1. The analytic form chosen was an exponential form. 

Figure 2 describes the characteristics grid for a general case of countercurrent two phase 
flow system, i.e. the injection of transferable material simultaneously in both phases (at 
x = 0 and x = Xmax) and, of course, where f l ,  f , ,  212, 22t, are all x dependent. It is seen 
from figure 2 that the integration of the differential equations for the countercurrent case 
is more complicated than for the cocurrent case. In fact the cocurrent method of integration 
described by Reiss (1974) cannot be applied here. 

The countercurrent case has been programmed by Dayan (1968) using the method of 
characteristics for the constant coefficients case, where all the transferable material enters 
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the system through one phase only (say, at x = 0). This eliminates the upper triangle grid of 
figure 2, and, of course, the characteristic lines of this figure are all straight lines (constant 
velocities and constant transfer coefficients throughout the system). There should be no 
hindrance to the development of a general procedure of integration for the general case of 
countercurrent flow system on a point by point basis, where successive points are found by 
integration from a pair of previous points. However, based on the conclusions derived from 
the comparison of the cocurrent case solutions (by the method of characteristics) to the 
herewith suggested (Monte Carlo) method it was already clear that this is not worth the 
effort. Moreover, because of the non-linearity of the characteristic lines, there is the danger 
that an iterative method would tend to bunch the generated points and not cover the entire 
(x, t) plane effectively. 

Next we shall present the novel Monte Carlo method to solve the set [2]. 
As in other Monte Carlo simulation techniques a large number of"particles" is injected 

into the system to simulate the transported tracer material. Each one of these particles 
follows a certain path through the system (we randomly specify a jump from phase to 
phase at different times and locations). While in a certain phase it is assumed that these 
tracer particles travel at the same velocity and have the same interphase exchange co- 
efficients as the actual material transported in the system. The exchange coefficients specify 
jump probabilities for the particles and from these probabilities together with the known 
phase velocity a probability distributions for the length of stay in each of the phases can be 
derived. As the particle velocities and jump probabilities (exchange coefficients) are x 
dependent only and previous history has no effect whatsoever on the coming steps, the 
described process is a Markov process (Rappaport & Dayan 1973). 

Recording the position of each particle at selected times gives the particle distribution 
within the system as a function of time. The distribution of the times needed for the particles 
to exit the system is the RTD. 

The jump probabilities are derived formally as follows: consider tracer particles in phase 
i at (Xo,to). These particles travel on the trajectory ~z = f~(x,, t). 

For such particles the loss from phase i along the trajectory on some small time interval 
is approximated by: 

d 
Ci(x ,, t) = - ~ 20(x,)Ci(x ,, t). [13] 

j = l  

Note that this is simply the homogeneous part of the ordinary differential equation [1] for 
the time change in C along the trajectory. Integrating, 

C,(xt, t) ~- Ci(xo, to)CXP( - ftto j~= ).o~xs)ds) [14] 

where x~ is x(t) along the integration path (t = s). Thus, of the original particles at point 
(Xo, to): 

Ci(xo,to ) - exp - o ~1"= )'°(xs) ds [15] 

is the fraction which remains in phase i at point (x, t). 
Thus, the probability of remaining in phase i on interval (t o, t) given that the particle at 

time t o is at Xo, is: 

Pr(no jump on (to, t)lXo) = exp - ds . 
o "= 

[16] 
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From the definition of the exchange coefficients, we conclude that the probability of 
jumping from phase i to phase k 4: i is: 

Pr(jump from i to k on (t o, t)lx,,) ~- 2ig(Xo)(t - to). [17] 

We can further determine, given the fact that a jump has occurred at Ix, t] the probability for 
jumping into any other phase k ~ i: 

Pr(jump from i to k on (t, t + At) Ix) 
Pig(x, t )  = lim [18] 

~,-0 Pr(.jump from i on (t + At)Ix) 

where A x  = f ( x ,  i)At. 

From [16] and [17] 

Lklx. t) 
Pig(x, t) - ,, [19] 

y~ ;.,,~x, t) 
j = l  

Thus, we have all the probability distributions we need to generate our tracer particle 
trajectories for the Monte Carlo method. 

Note that the above probabilities are given in terms of path integral, that is unlike other 
Monte Carlo simulation techniques where all probabilities are calculated at present 
locations or time periods resulting from arbitrary division (discretizing) of the entire space. 
Thus a novel continuous time and space technique is suggested which eliminates the 
artificial nature of the familiar techniques. 

We shall now explain the method of generating the particle trajectories. Assume we have 
generated the trajectory up to time to and point Xo and the particle has just jumped at (to, Xo) 

to phase i. The next point of jump of the particle out of phase i is generated in accordance 
with the above described probabilities. This is done by generating a random variable X, the 

next jump location, whose probability distribution is given by: 

Pr(X < x) = 1 - exp - . [20] 
~= ~ o ~ ( y )  / 

Equation [20] is derived from [16] by a change of variable and the law of conservation of 
probabilities. 

The time to the next jump is simply that required to reach x from Xo on the trajectory in 
phase i starting from (Xo, to). 

A common technique (see, for example, Himmelblau (1970)) is used to modify a random 
number, R N ,  having a uniform probability density over the interval (0, 1) into a random 
variable F -  1 ( R N )  with the required probability distribution F(x)  = P r ( X  < x). 

The procedure for generating the next projected jumping point is to generate the uniform 
random variable R N ,  and then to find F -  I(RN), (a table-search technique can be used). If 
the jumping point is outside the system boundaries, we truncate the trajectory at the 
boundary and calculate the residence time for the particle. Otherwise we pick the phase to 
which the particle will jump, again using the random number generator and the prob- 
abilities of [19]. 

At this stage we have a new initial point, a new time coordinate, and a new phase, so we 
can proceed to generate the remainder of the particle trajectory from these new starting 
points. 

The assumption of forward flow in the above derivation does not detract from its 
generality. In the computer program implementation, flow can be assumed positive for all 
phases, and a transformation of coordinates can be made when jumping between phases of 
different directions. 

The Monte Carlo method can be interpreted in terms of the characteristic lines. To do 
this we substitute for the concept "normalized concentration of material at (x, t)', the prob- 
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abilistic equivalent "probability that a single particle will be found at x at time t". The 
particles move in the characteristic directions ~: = f~(x, t). If we generate a large number of 
trajectories according to the probabilities of [17] and El9], we tend to cover the (x, t) plane 
with these trajectories with a density proportional to the probability of a particle being at 
(x, t). 

Equations E11] and E12] for the concentration of material in the "Pure C1" and "Pure C2" 
curves are similar to the Monte Carlo probability for a tracer particle to remain in its initial 
phase without jumping ([16]). The differences between these equations and [16] are due to 
the fact that [16] is an integration in t, while [1 I] and El2] are integrations in x. 

The application of the usual type of random walk techniques requires the building of a 
fine space grid on which the typical particle moves from one intersection to another. Note 
that this is fundamentally similar to the building of the time-space grid for the solving of 
the above partial differential equations by the ~ethod of characteristics. In both these 
cases, theoretically speaking, the finer the grid the closer the calculated solution is to the 
actual solution of the partial differential equations. For the sake of argument let us call the 
above procedures grid decision ones. 

In contrast, for the jump process described above, the mean number of jumps which a 
typical particle undergoes on some finite time interval is finite as is also the standard 
deviation about this mean. The significance of this is that the number of decisions (i.e. jumps) 
that the typical particle makes is considerably fewer than that int'oh, ed in the grid-decision 
procedures. This accounts for the fact that the computation time needed for reasonable 
solutions by the simulation technique suggested by the authors is less than that needed for 
the grid-decision procedures (see the numerical example). Further, the probability formula 
[18] indicates that the proper partitioning of the grid for the grid-decision procedures is one 
that will correspond to equal probability of jump from grid point to grid point. This means 
at point Ix, t), for example, in the method of characteristics, the grid points (i.e. the inter- 
section points of the various characteristic curves), should be spaced on the x-axis at 
distances proportional to 2~Ix)/li(x). However. this results in a different x quantization for 
each phase. This situation is highly impracticable. 

NUMERICAL EXAMPLE 

The following example is given here merely for the sake of comparing the method of 
characteristics and the newly suggested Monte Carlo method in order to point out the 
advantages of the latter. The physical system chosen for these calculations is the fluidized 
bed system, in which, to our understanding, it is possible to describe the pattern of gas flow 
by means of a two phase plug flow model. As it is not the purpose of this paper to justify the 
adequacy of such a model for this system, no attempt was made to compare the RTD curves 
obtained from the calculations to any real experimental data. 

Let us discuss the two regional models for fluidized bed first. In a series of articles, later 
summarized in their book, Kunii & Levenspiel (1969) proposed a simple one-parameter 
model for a fluidized bed. Calculation orall bed variables was based on this single parameter 
- - the  equivalent bubble diameter. In this model gas flows through two cocurrent "phases", 
the "bubble phase" and the "emulsion phase". Under certain flow conditions (uo/u,, I > 
6 - 11) the emulsion phase reverses itself and flows downwards, counter to the uprising 
bubbles. It is assumed in the original KL (Kunii and Levenspiel) model, among other 
things, that the flow of gas is plug-flow in both phases and that due to breakage and coales- 
cense the size of bubbles remains constant along the bed. RTD curves for the original KL 
model with the constant bubble size assumption were first calculated using the Method of 
Characteristics by Yoshida & Kunii (1968) and by Dayan & Levenspiel (1970). A possibly 
more realistic model with varying bubble size can be derived as follows (for nomenclature 
refer to figure 3). 
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Cocurrent ~ 

(1-~;(t-,~ (t-8;,Fmf 

c ..... ,., [ 1 Countetcurrent 
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X:Xrnox 

Vrochon m Ded 
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Exchange Coefhctents 

X:O 

TOfOI volurr~frlc flow 
Totol $uperflc~ol flow 

Figure 3. Schematics of the fluidized bed model. 

The single-bubble velocity in the bed is given by Davidson & Harrison (1963). 

Ub, = 0.71 l(gdb,) l'z. [21] 

Obviously a large bubble rises faster than a small one. It is known that bubbles grow as 
they rise in the bed. They also grow when the input gas velocity is increased (Kobayashi & 
Arai 1964; Kunni & Levenspiel 1969, p. 185). 

The single bubble velocity is related to the bubble phase velocity through (Kunii & Leven- 
spiel 1969, pp. 154, 161}: 

ub = u,, - u,, , f  + 0.71 l ( gdb , )  t:2. [22] 

This was derived from the equation for a-- the bubble fraction in the bed 

a = u° - u"s,  [ 2 3 ]  

II b - -  l l m f  

The emulsion gas velocity is given by 

where 

l l m f  u~, - u~ [24] 
8 m f  

~aub 
u s -  l - a - z ~ a  [25] 

can be calculated from [23]. a, which is defined as (volume of wake/volume of bubble), is a 
constant between 0.25 + 0.4 as was given by Orcutt (1960). Knowing the change of db, 
along the bed, ub and ue at all bed levels can be calculated from the above equations. Kunii 
& Levenspiel (1969) state that for U o / U , , / >  2 only large fast bubbles with negligible clouds 
may be expected in the bed. For such bubbles the exchange coefficients are given by the 
following equations: following equations: 

E~ I /20 ,1 . '4  
m f  "z'eq o ;.b, "- 4.5 + 5.85 [26] 
ab, 

g, mf(~.eqUb 1/2 
[27] 

1 1)  -1 
' = + [283 
/-he )-he ';-c,, 
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2eb = [29] 
(1 - ~)~-s 

where e , s ~  < ~ < ~,q (~  = molecular diffusion of tracer material). 
For  the cocurrent flow case (Uo/Ums > 6 - 11) tracer injected at the distributor is divided 

between the bubble phase and the emulsion phase in accordance with the ratios Pb and p,, 

where 

F h _ F b _ u o - u,~I(l - 6) [30] 
P b - F b  + F , F, Uo 

p, = 1 - Pb. [31] 

For countercurrent flow all the material is injected into the upwards flowing (bubble) 
phase. A certain fraction of the material exiting at x = xm,x is sucked back into the down- 
wards flow and does not leave the system. This fraction is the ratio of volumetric flow rates, 

Pr ,  o r :  

p, (suction back into system) = (1 - 6)eml [32] 
6 + (1 - 6)ems' 

There are a few studies of changes in bubble size along the bed and the effect of gas 
velocity on these changes. For the present example the Kato & Wen (1969) relationship was 
taken (see also Fryer & Potter 1972)" 

db, = (db,)x= o + m x  [33] 

where (db,)x= o is the size at the distributor and m is given by Kobayashi et  al. (1966) as 

u° [34] m = 1.4(dpps) Urns' 

No check for maximum stable bubble diameter has been made in this study. Since a value 
of 6 greater than 0.5 was considered unrealistic, db, was not allowed to go below the value 
which results in 6 = 0.5 in our simulation. 

Table 1 summarizes all the data necessary to calculate the RTD for a hypothetical 
fluidized bed filled with microspherical catalyst (Hiraki et  aL 1965). Air at atmospheric 
conditions was used as the fluidized agent and helium (~  = 0.71 cm2/sec) was used as the 

non-absorbed tracer for the RTD study. The uo/ums ratios for both cocurrent and counter- 
current cases imply large fast bubbles with negligible cloud. 

T a b l e  I. D a t a  fo r  c a l c u l a t i o n s  o f  R T D  in f luidized bed 

M a t e r i a l  Microspherica| Catalyst 

Fluid 

dpl mm } 

u C~ mf [ +~"~') 

cmf 

(dbr)z.olCm] 

Ltcm] 

Uo/Umf 

Air (at atmospheric pressure) 

0.15 

1.54 

3.4 

0.5 

0.3 

2.0 (estimated) 

100.0 

{ 1~ (giving CO . . . .  ent f]ow} 
(giving countercurrent flow) 
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In the course of calculations we have made several assumptions (which can be easily 
modified as better physical data or relationships become known, without affecting the 
method of calculation): 

(1) e,, I = 0.5 was used where no other relations are given. 
(2) ~t was estimated as in Kunii & Levenspiel (1969, Ch. 5). 
(3) ~q = ~. 
(4) The height of the fluidized bed does not change much with changes it, u o. 

RTD for the above described fluidized bed model was calculated by both methods. 

R E S U L T S  A N D  C O N C L U S I O N S  

The fluidized bed example provides highly non-linear expressions for the system para- 
meters ,;.(x)'s and f(x)'s. Thus, these parameters were precalculated in several points along 
the system (at several x's) and stored in the computer in the form of tables. 

In the computation of the distribution by the Monte Carlo program, and in the integra- 
tions of the characteristics program, it was assumed that the values of the system parameters 
2 and f remained constant over each interval of the quantization of x. Obviously such an 
assumption is valid only if the quantization used is fine enough. An investigation of the 
necessary quantization was given by Reiss (1974). 

It should be emphasized, however, that the above described discretization of the model 
parameters is just a computation tool and has nothing to do with the continuous nature of 
the probability calculations method for the Monte Carlo simulation technique presented 
here. 

In the course of calculations two assumptions were made: 

(i) . f l ix )  > J 2 ( x ) ( f o r  method of characteristics only). 
(2) A phase flows in one direction only. Flow cannot reverse in the middle of the system. 

(A reversing flow can, however, be modeled by a positive phase and a negative phase, 
with an infinite exchange coefficient between them at the point of reversal.) 

Several runs by both methods were made, for the fluidized bed example, in order to study 
the effect of the following factors: 

(a) constant vs. varying coefficients; 
(b) rate of change of the varying coefficients; 
(c) effect of running more particles in the Monte Carlo simulation technique. 

The ability of the Monte Carlo simulation method to describe spatial material distribution 
in the system was studied as well. 
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Figure 4. Fluidized bed, constant coefficients case. 



M E T H O D S  FOR C A L C U L A T I N G  T R A C E R  D I S T R I B U T I O N  IN M U L T I P H A S E  P L U G  F L O W  SYSTEMS 2 9  

/ 
C | D b tISl~ Ot r/4 I r ~  r o l e  

0021 
0 ~ 
0 20 40 60 80 IO0 

I 
120 lsec 

D b rlSrr~ ot 112 true tote 

0 0 I  

0 I 
0 20 40 60 80 fO0 120 f see 

0 "C008 O b rrein9 at t rue r o l e - s y s t e m  model. 

I I I 1 1 I 
O0 L>O 40 60 80 I00 lEO t eec. 

Figure 5. Comparison of Monte Carlo and characteristics for different rates of change of f and ;.. 

The first curve (figure 4) was obtained by both methods for the constant coefficient case. 
The system of table 1 with constant bubbles diameter db ,=  2 cm (size of bubbles remained 
constant implies constant velocities and constant exchange coefficients along the bed) and 
Uo/U,,,r = 2 yielded practically identical RTD curves with "/= 55.1 sec and tr = 13.7 sec. 
Both methods can handle this case adequately. Being smoother the characteristic results 
may be preferable for such a case (see also Dayan & Levenspiel 1970). When solved for the 
varying parameters case, i.e. fluidized bed uf table 1, where bubble diameter changes 
(following [33]) and uo/umy = 2, discrepancies appeared between the results of the two 
methods (see figure 5a). The moments of the distribution were: 

Monte Carlo :? = 55.1; tr = 29.0 (sec) 
Characteristics: i = 63.44; tr = 26.4. 

To investigate this further, the top two plots in figure 5 (5b and 5c) show the results for 
the fluidized bed model with the linear regression for d b taken at 1/4 (5c) and 1/2 (Sb) of its 
slope in the model of [33]. 

We see that the divergence in results is much smaller for systems whose parameters vary 
less strongly than our fluidized bed. 

Notice that the shape of the RTD changes for the model where the initial and final peaks 
are well defined. This is explained by the inability of the characteristics integration program 
(see Reiss (1974)) to handle what amounts to a delta function. 

In addition, the integration method for the characteristics program gives a cumulative 
error which apparently gives a value which is too low. 

The effect of running more particles in the Monte Carlo method was investigated by 
generating RTD curves: first based on 5000 particles and then on 24,000. The curves are 
given in figure 6 and the moments are: 

R = 5000 particles : i = 55.3; tr = 28.8 (sec) 
R = 24,000 particles: 7 = 55.1 : a = 29.1. 

The Monte Carlo method obviously gives more reliable results when more particle 
trajectories are computed. We see in figure 6 that increasing the number of particles from 
5000 to 24,000, considerably smoothens the resulting RTD. 
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Figure 6. Effect of number of particles--Monte Carlo. 

Thus, the number of particles necessary for the Monte Carlo solution depends on the 
desired smoothness and accuracy of the results. Figure 6 may be used as a guide for the 
effect of the number of particles. If only an indication of the expected residence time and its 
standard deviation is desired, a relatively small (I000) number of particles should be 
sufficient. A l imit here is the randomness of the random number generator in the computer, 
which should, however, be sufficient for most applications. 

To demonstrate the ability of the Monte Carlo simulation technique, to describe the 
spatial distribution of material within the system, particles concentrations were calculated 
for different values of t. Figure 7 shows the distribution along the system at 10, 20, 30, and 
40 sec from time of injection. The tracer, or for that matter the particles, init ial ly con- 
centrated near x = 0, move up through the system towards x = I00. 

However, for the determination of the particle distribution within the systcm, the charac- 
teristics program may be preferable if the distributions are desired for a large number of 
time values, as this is a natural product of the integration of the concentrations. The results 
of the Monte Carlo program in this case are less dependable, since the particle distribution 
at a given time must be derived by retracing the particle trajectories, which are always 
generated until the next projected jump point. The trajectories must, therefore, be retraced 
from the jump time to the time which we wish to sample. This adds an extra interpolation 
which reduces the accuracy of the results. (For example, four samplings of the particle 
distributions in the system (figure 7) changed the computed maximum residence time from 
118 to 124 sec.) Unfortunately, the accuracy of the characteristics program is limited by 
the rate of change of the system parameters as was shown above. 

It has been mentioned above that the program for the method of characteristics, in its 
present form, is unable to handle the case of countercurrent flow of phases with changing 
coefficients. The Monte Carlo method, however, can easily solve for both countercurrent 
and recycling flow (which is the case in our fluidized bed example) as well as for the fluidized 
bed of table 1 with Uo/U,,r = 14, which resulted in countercurrent (recycling) flow system. 

A few words should be said about the two programs themselves. In the present form the 
Monte Carlo program requires more computer memory than the method of characteris- 
tics program. However, with a small modification in the Monte Carlo program, computer 
storage requirements of the two programs would be equivalent (Reiss 1974). 

The storage requirements for the program as written are approximately 13N + 1.1R, 
where N is the number of quantization levels and R is the number of particles run. With 
some minor modifications the storage requirements can be reduced to only 13N. The 
characteristics program, in comparison, requires approximately 15N storage locations 
within the computer  
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Figure 7. Particle distribution in the system. 

On the other hand, the Monte Carlo Program takes less computer time to run ttqan the 
method of characteristics. 

In a typical computer run for the fluidized bed (10,000 particles, IBM370/165 Computer), 
the characteristics program ran for 70 sec, while the Monte Carlo program ran for only 
30 sec. The time required for the characteristics program varies with N 2 (N quantizations 
for x and N quantizations for t), while the time for the Monte Carlo program varies linearly 
with the number O f particles and the dependence on N is only secondary (the computation 
of the N sized tables is made only once, and the repeated search of these tables is by succes- 
sive binary partition and so varies with log/N). For fine quantization solutions of the RTD 
it is thus preferable to use the Monte Carlo program. 

We note that there is widespread use of the popular dispersed plug flow model for 
describing flow systems that can be very adequately described by multiphase plug flow with 
varying coefficients (see, for example, the possible model for spouted bed suggested by 
Dayan et al. (1973)). Use of the dispersed plug flow model for such systems is made because 
of the computational difficulties arising in the solution of the hyperbolic partial differential 
equations obtained for the pure plug flow model. (The dispersed plug flow model usually 
results in a set of parabolic equations, easily solved by familiar numerical methods.) In 
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other words, inserting a diffusion term was not always made on the basis of physical reasons 

but as an escape from mathematical difficulties. It seems that with the aid of the present 
proposed stochastic technique it would be possible to solve the original simpler and more 
logical model describing such systems. 
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R6sum6-- On pr~sente une nouvelle technique de simulation de Monte Carlo, continue sur le temps 
et l'espace, pour r(~soudre les equations d6crivant la distribution d'un traceur dans des ecoulements 
multiphasiques non homog~nes h bouchons. On donne une comparaison avecla methode des 
caract+ristiques, couramment utilis6e. Cette comparaison indique que la m6thode des caract~r- 
istiques n'est pas fiable pour des syst+mes dans lesquels les parametres varient de faqon particuliere. 
De plus les r6sultats indiquent que la m+thode de Monte Carlo sugger~e est plus etficace en temps 
de calcul que la m6thode des caracteristiques. On donne des exemples. 

Auszug--Fuer die Loesung yon Gleichungen, die die Indikatorenverteilung in nichthomogenen 
Vielphasensystemen mit Pfropfenstroemung beschreiben, wird eine neue, zeitlich und raeumlich 
kontinuierliche Monte Carlo-Simulationstechnik angegeben. Beim Vergleich mit der ueblicherweise 
angewandten Charakteristikenmethode erweist es sich, dass letztere bei Systemen mit speziell 
veraenderlichen Parametern unzuverlaessig ist. Ferner zeigen die Ergebnisse, dass die vorgesch- 
lagene Monte Carlo- Techt~ik Rechnerzeit wirkungsvoller ausnuetzt, als die Charakteristiken- 
methode. Beispiele werden angefuehrt. 



METHODS FOR CALCULATING TRACER DISTRIBUTION IN MULTIPHASE PLUG FLOW SYSTEMS 33 

Pe3mMe-- l ipe / l .noxeHa MO~leJlb THna MeTOlla MoHTe-Kap.no c xenpept~BUbJM BpeMeHeM H 
npocTpaHCTBOM aria pellleUH~l ypasMeHHtt, OHHCl~BalOmHX pacnpe.ueJ~eHMe MeqeHHX aTOMOB B 
MHOFO(~aBHblX HeO~HOpOaHUX cHcreMax, rlpoBe,~eHo cpaeHeHMe c H3BeffrHblM MeTO~.OM xapax-  
TepHc'rHL CpaBHfHH¢ rlolca3aJlo, qTO ,[~IA CHCTCM CO CHCII.HaJIbHO MCHAIOLUHMHC$1 rlapaMeTpaMH, 
MeTO~ xapaKTepHCTHX S B ~ e T c s  HeHa,~C~HMM. ~MJIO no~a3aHo, qTO n p e ~ n a r a e M a s  TeXHHKa 
MoHTe-Kapno  ~anSeTC~l ~,o.~ee a(~(~KTHBHOI~, l~pHBC~CHld npuMepla. 
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